

JEE (ADVANCED), PMT & FOUNDATIONS

UTS- NEET -2020

MOCK TEST-10 SOLUTION

ANSWER KEY

BIOLOGY														
1) <u>4</u>	<u>2) 4</u>	<u>3) 4</u>	<u>4)</u> <u>3</u>	5) <u>4</u>	<u>6)</u> <u>1</u>	7) <u>4</u>	<u>8) 1</u>	<u>9) 4</u>	<u>10) 4</u>					
<u>11)</u> <u>2</u>	<u>12)</u> <u>2</u>	<u>13)</u> <u>2</u>	14) <u>3</u>	15) <u>3</u>	<u>16) 4</u>	17) <u>4</u>	<u>18)</u> <u>2</u>	<u>19)</u>	20) <u>2</u>					
21) <u>3</u>	<u>22)</u> <u>2</u>	23) <u>3</u>	24) <u>4</u>	25) <u>4</u>	<u>26) 4</u>	27) <u>3</u>	28) <u>1</u>	29) <u>2</u>	<u>30) 4</u>					
<u>31) 4</u>	<u>32) 4</u>	<u>33)</u> <u>3</u>	34) <u>1</u>	35) <u>4</u>	<u>36) 4</u>	37) <u>4</u>	38) <u>3</u>	<u>39)</u> <u>2</u>	<u>40)</u> <u>2</u>					
<u>41)</u> <u>3</u>	42) <u>4</u>	43) <u>3</u>	44) <u>2</u>	45) <u>1</u>	<u>46)</u> <u>2</u>	47) <u>3</u>	48) <u>3</u>	49) <u>4</u>	50) <u>3</u>					
<u>51)</u> <u>3</u>	52) <u>4</u>	53) <u>1</u>	54) <u>2</u>	55) <u>2</u>	56) <u>3</u>	57) <u>4</u>	58) <u>2</u>	59) <u>1</u>	<u>60)</u> <u>3</u>					
<u>61) 4</u>	<u>62) 4</u>	<u>63) 4</u>	<u>64)</u>	<u>65)</u> <u>3</u>	<u>66) 4</u>	67) <u>4</u>	<u>68)</u>	<u>69)</u> <u>4</u>	70) <u>1</u>					
71) <u>3</u>	72) <u>1</u>	73) <u>4</u>	74) <u>4</u>	75) <u>3</u>	76) <u>4</u>	77) <u>4</u>	78) <u>1</u>	79) <u>4</u>	<u>80)</u> <u>3</u>					
<u>81)</u> <u>2</u>	<u>82)</u> <u>3</u>	<u>83)</u> <u>2</u>	<u>84)</u>	<u>85)</u> <u>4</u>	<u>86)</u>	87) <u>3</u>	<u>88)</u>	<u>89)</u>	<u>90)</u> <u>3</u>					

CH	EM	IST	R Y

91)	<u>1</u>	92)	<u>3</u>	93)	<u>2</u>	94)	<u>1</u>	95)	<u>4</u>	96)	<u>3</u>	97)	<u>2</u>	98)	<u>3</u>	99)	<u>2</u>	100)	<u>4</u>
101)	<u>4</u>	102)	<u>3</u>	103)	<u>3</u>	104)	<u>4</u>	105)	<u>3</u>	106)	<u>2</u>	107)	<u>2</u>	108)	<u>1</u>	109)	<u>3</u>	110)	<u>2</u>
111)	<u>3</u>	112)	<u>3</u>	113)	<u>3</u>	114)	<u>4</u>	115)	<u>4</u>	116)	<u>1</u>	117)	<u>2</u>	118)	<u>2</u>	119)	<u>4</u>	120)	<u>1</u>
121)	<u>2</u>	122)	<u>2</u>	123)	<u>3</u>	124)	<u>1</u>	125)	<u>4</u>	126)	<u>3</u>	127)	<u>4</u>	128)	<u>2</u>	129)	<u>4</u>	130)	<u>2</u>
131)	<u>1</u>	132)	<u>3</u>	133)	<u>3</u>	134)	<u>2</u>	135)	<u>1</u>										

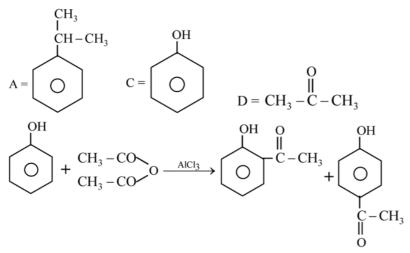
PHYSICS

136)	4	137)	1	138)	3	139)	4	140)	1	141)	3	142)	1	143)	3	144)	4	145)	1
146)	1	147)	1	148)	1	149)	1	150)	4	151)	3	152)	4	153)	4	154)	2	155)	1
156)	4	157)	2	158)	3	159)	2	160)	2	161)	2	162)	1	163)	3	164)	3	165)	2
166)	4	167)	2	168)	4	169)	3	170)	2	171)	4	172)	1	173)	2	174)	2	175)	4
176)	4	177)	2	178)	2	179)	1	180)	2										

[CHEMISTRY]

91. For 's' orbital $\ell = 0, m = 0$ Total volume of CH_4 and $C_2H_6 = 2.24$ lit 92. $V \propto n$ \therefore Volume of CH₄ = 1.12 lit Volume of $C_2H_6 = 1.12$ lit i.e., 22.4 lit \longrightarrow 16g CH₄ 22.4 lit \longrightarrow 30 g 1.12 lit \longrightarrow ? = 0.8 g 1.12 lit \longrightarrow ? = 1.5 g \therefore Total weight of a gaseous mixture = 0.8 + 1.5 = 2.3 g 93. $Hg_2^{+2} \longrightarrow 2Hg^{+2}$ $S^{-2} \longrightarrow SO_4^{-2}$ $Hg_2^{+2} \xrightarrow{2e^-} Hg_2^{+4}$ $S^{-2} \xrightarrow{8e^-} S^{+6}$ \therefore n - factor of Hg₂S = 2 + 8 = 10 - 4 + 4 -4 +4 +6 -6 $N_2H_4 \longrightarrow N_2O_3$ 10e⁻ n - factor = 1094. $PCl_{5(g)} \Longrightarrow PCl_{3(g)} + Cl_{2(g)}$ P.P _{PCl₅} = T.P × M.F_{PCl₅} = $3 \times \frac{3}{9} = 1$ $P.P_{PCl_3} = 3 \times \frac{3}{9} = 1$ $P.P_{Cl_2} = 3 \times \frac{3}{9} = 1$ $\therefore \mathbf{K}_{p} = \frac{\mathbf{P}_{PCl_{3}} \times \mathbf{P}_{Cl_{2}}}{\mathbf{P}_{PCl_{3}}} = \frac{1 \times 1}{1} = 1$ Amount left = $\frac{\text{Initial amount}}{2^n}$ 95. n = number of half life periods = $\frac{5}{10} = \frac{1}{2}$ Amount left = $\frac{2}{2^{1/2}} = \frac{2}{\sqrt{2}} = 1.414$ grams 96. $E_{RP} = E^{\circ} - \frac{0.059}{n} \log \frac{P_{H_2}}{\left[H^+ \right]^2}$ $2H^+ + 2e^- \longrightarrow H_2$ $E_{\rm RP} = 0 - \frac{0.059}{n} \log \frac{10}{\left(10^{-3}\right)^2}$ = 0.21 V

Mock Test-10


98.
$$KMnO_4 \xrightarrow{5e^-} Mn^{2-}$$

∴ 5 Faradays

99.
$$\Delta G = \Delta H - T\Delta S$$
$$\Delta G = 3.3 - 300 \times 2 \times 10^{-2}$$
$$= 2.7 \text{ K.Cal}$$

 $\Delta S = 20 \text{ cal} \quad \text{(or)} \quad 2 \times 10^{-12} \text{ K.Cal}$

- 101. PH₃ has lone pair of electrons on 'P' hence acts as nucleophile
- 102. Conceptual
- 103. Milk is a oil in water emulsion

is known as Fries rearrangement reaction

- 105. Conceptual
- 106. Conceptual
- 107. PHBV is a copolymer of 3 hydroxy pentanoic acid and 3 hydroxy butanoic acid
- 108. Conceptual

109.
$$CN^- + H_2O \rightleftharpoons KCN + OH^-$$
; $K_1 = 10^{-9}$

$$\begin{array}{c} \mathrm{HCN} + \mathrm{OH}^{-} \rightleftharpoons \mathrm{CN}^{-} + \mathrm{H}_{2}\mathrm{O} \ ; \ \mathrm{K}_{2} = ? \\ \downarrow \end{array}$$

Neutralisation

$$K_2 = \frac{1}{K_1} = \frac{1}{10^{-9}} = 10^9$$

- 110. Conceptual
- 111. Conceptual

112.
$$\Delta E = (E_a)_f - (E_a)_b$$

 $30 = 42 - (E_a)_b$
 $(E_a)_b = 42 - 30 = 12$

113.
$$\Delta H_{f}^{0}$$
 of water is $H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_{2}O_{(\ell)}, \Delta H = ?$
Latent heat of vapourization is $H_{2}O_{(\ell)} \longrightarrow H_{2}O_{(g)}, \Delta H = x_{4}$

i.e.
$$\Delta H_{f}^{0} = B.E_{R} - B.E_{P} = \left(E_{H-H} + \frac{1}{2}E_{O=O}\right) - (2E_{O-H})$$

 $\Delta H_{f}^{0} = x_{1} + \frac{1}{2}x_{2} - 2x_{3}$
But $\Delta H_{f}^{0} H_{2}O_{(\ell)} = x_{1} + \frac{1}{2}x_{2} - 2x_{3} - x_{4}$
115. $r \propto \frac{1}{\sqrt{M.wt}}$
i.e., $r_{1} : r_{2} : r_{3} = \frac{1}{\sqrt{64}} : \frac{1}{\sqrt{32}} : \frac{1}{\sqrt{16}}$
 $= \frac{1}{8} : \frac{1}{4\sqrt{2}} : \frac{1}{4}$
 $= \frac{1}{2} : \frac{1}{\sqrt{2}} : \frac{1}{1}$
 $= \frac{1}{2} : \frac{\sqrt{2}}{2} : \frac{1}{1}$
 $= 1 : \sqrt{2} : 2$

116.
$$R_f \propto \frac{1}{adsorption power}$$

117. Aldehydes are more reactive for nucleophilic acids than ketones. EWG increases the addition reaction further due to stabilisation of carbocation

- 118. It is an allylic substitution, hence
- 119. 1° R X and less steric. Alkyl halides are more reactive for SN^2 . Hence $CH_3 I$ is more for SN^2

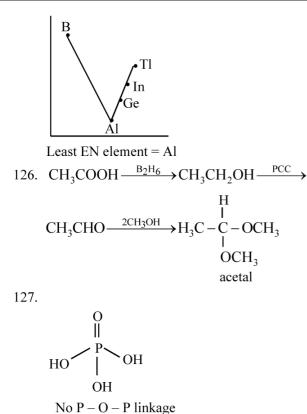
120.
$$CH_3 - CH = CH_2 \xrightarrow{B_2H_6} CH_3 - CH_2 - CH_3OH$$
.

It follows antimarkownikoff rule

121.

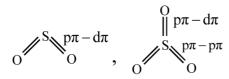
$$CH_{3} - O - C - CH_{3} \xrightarrow{Conc.HI/\Delta} CH_{3} - CH_{3} \xrightarrow{CH_{3}} H_{3} - CH_{3} \xrightarrow{CH_{3}} H_{3} - CH_{3} \xrightarrow{CH_{3}} H_{3} - CH_{3} \xrightarrow{CH_{3}} H_{3} \xrightarrow{CH_{3}} H_$$

It follows SN^1 mechanism, hence a stable carbocation is formed


122.
$$2CH_3Cl + Si \xrightarrow{Cu} (CH_3)_2 SiCl_2$$

123.
$$H_3C - CH = CH_2 + H^+ \longrightarrow H_3C - CH - CH_3$$

(2° carbocation)


Peroxide effect is shown only by HBr. So electrophilic addition reaction takes place

124. Acidic strength increases with increase in K_a value for 6th group elements.

125.

128.

In both cases 'S' undergoes sp^2 hybridisation and number of $p\pi - d\pi$ bonds are 1 and 2 respectively

130. In aqueous state

For ethyl : $2^0 > 3^0 > 1^0 > Me$ For methyl : $2^0 > 1^0 > 3^0 > Me$

131.

$$CH_3 - CH = CH - CH_2 - C - CH_3 \xrightarrow{\text{NaOCI}} CHCl_3 + CH_3 - CH = CH - CH_2 - COO^- Na^{\oplus}$$

It is an iodoform mechanism

132. In B_2H_6 , bridges 'H' atom are present and is electron deficient molecule. It cannot possess dative bond

- 133. Conceptual
- 134. Conceptual
- 135. Basic nature \downarrow
 - From Lanthanum to Lutecium

Mock Test-10

ULTIMATE TEST SERIES NEET -2020 (Answers & Solution)

[PHYSICS]

- 136 Value of scalar is independent of orientation of observer.
- 138. For above condition to be true, the particle must reach maximum height at t = 5 second

$$0 = u - gt$$

$$\Rightarrow u = gt = 9.8 \times 5$$

$$= 49 \text{ m/s}$$

139. $a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = v \frac{dv}{dx}$

$$\therefore a = v \frac{dv}{dx}$$

so when $v = 0$ we get

$$o$$
 when $v = 0$ we get $a = 0$

$$\mathbf{v} = \mathbf{x}^2 - 5\mathbf{x} + 4$$

$$\therefore \frac{dv}{dt} = 2x\frac{dx}{dt} - 5\frac{dx}{dt} + 0$$
$$\Rightarrow acc. 'a' = (2x - 5)v$$

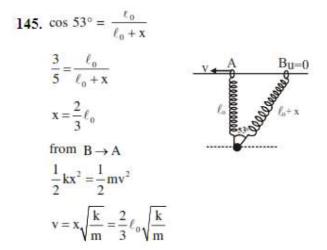
$$\therefore$$
 when $v = 0$, $a = 0$

140. Conceptual

- 142. As initially $v_{cm} = 0$ and $F_{ext} = 0$. So v_{cm} remains same, that is $v_{cm} = 0$
- 143. Area of graph = Impulse

$$\left(\frac{\pi}{2}\frac{f_0T}{2}\right) = (mu-0) \implies u = \frac{\pi f_0T}{4m}$$

144.
$$a_1 = K^2 r t^2$$


as
$$\frac{dv}{dt} = a_t$$

so $dv = K^2 r t^2 dt \implies \int dv = \int k^2 r t^2 dt$
 $v = k^2 r \frac{t^3}{3}$
[$v \propto t^3$]
So centripetal acceleration is variable
[as $a_c \propto v^2$]

$$\begin{bmatrix} \text{so } a_c \propto t^6 \end{bmatrix}$$

$$P_{t_i} = \vec{f}_i \cdot \vec{v} \neq 0$$

$$P_{t_i} = \vec{f}_c \cdot \vec{v} = 0 \text{ as } f_c$$

 \vec{f}_c is always \perp^r to \vec{v}

- 146. Electric field at a point is numerically equal to the number of lines of force crossing normally per unit area surrounding that point. Thus electric field at A is stronger than at B.
- 147. According to Gauss's theorem, the total normal

electric flux through the surface is equal to
$$\frac{1}{\epsilon_0}$$

times the total charge enclosed within the surface.

148. Conceptual

150. If power in R is maximum then

$$|R=r|$$
 $i = \frac{E}{2R} = \frac{E}{2r}$

Power in R

$$\mathbf{P} = \left(\frac{\mathbf{E}}{2\mathbf{R}}\right)^2, \quad \mathbf{R} = \frac{\mathbf{E}^2}{4\mathbf{R}}$$

input power.

$$P_{in} = \left(\frac{E}{2R}\right)^2$$
, $2R = \frac{E^2}{2R}$

Efficiency =
$$\frac{P_{out}}{P_{in}} \times 100 = 50\%$$

152. Current in the circuit I = $\frac{4E}{4r} = \frac{E}{r}$ Terminal potential V = E - Ir

$$= E - \frac{E}{r} \times r = 0$$

ULTIMATE TEST SERIES NEET -2020 (Answers & Solution)

154. The magnetic field at point P due to current I in AB is,

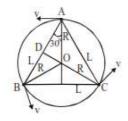
$$B_{AB} = \frac{\mu_0}{4\pi} \frac{I}{r} \otimes$$

The magnetic field at point P due to current I in BC is, $B_{BC} = 0$ (As the point P is along the BC) The magnetic field at point P due to current I in A'B' is.

$$B_{A'B'} = \frac{\mu_0 I}{4\pi r} \otimes$$

The magnetic field at point P due to current I in B'C' is,

- $B_{BC} = 0$ (As the point P is along the BC)
- ... The net magnetic field at P is,


$$B = B_{AB} + B_{BC} + B_{A'B'} + B_{B'C'}$$
$$\frac{\mu_0 I}{4\pi r} + 0 + \frac{\mu_0 I}{4\pi r} + 0 = 2\left(\frac{\mu_0 I}{4\pi r}\right) = \frac{\mu_0}{4\pi}\left(\frac{2I}{r}\right)$$

158.
$$E = \sqrt{V_R^2 + (V_L - V_C)^2}$$

 $= \sqrt{(80)^2 + (40 - 100)^2}$
 $= \sqrt{6400 + 3600} = \sqrt{10000}$
 $= 100V$
159. $R_i = 10 \text{ cm}$
 $R_i = 10 \text{ cm}$
 $R_i = 15 \text{ cm}$
 $f = +12 \text{ cm}$
 $R_i = +10 \text{ cm}$
 $R_i = -15 \text{ cm}$
 $\frac{1}{2} = (u - 1) \left(\frac{1}{2} - \frac{1}{2}\right)$

$$\begin{array}{l} \mathbf{f} \qquad \left(\mathbf{R}_{1} \quad \mathbf{R}_{2}\right) \\ \\ \frac{1}{12} = (\mu - 1) \left[\frac{1}{+10} - \frac{1}{-15}\right] \\ \\ \Rightarrow \frac{1}{12} = (\mu - 1) \left(\frac{3 + 2}{30}\right) \Rightarrow \frac{1}{2} = (\mu - 1) \left(\frac{5}{5}\right) \\ \\ \Rightarrow \mu - 1 = \frac{1}{2} \Rightarrow \mu = \frac{3}{2} = 1.5 \end{array}$$

161.
$$(\delta_{y})_{net} = 0$$

 $\delta_{y_1} + \delta_{y_2} + \delta_{y_1} = 0$
 $\Rightarrow (\mu_y - 1)A + (\mu_y '-1)(-A') + (\mu_y - 1)A = 0$
 $A' = \frac{2(\mu_y - 1)}{(\mu_y '-1)}A \implies \frac{A'}{A} = \frac{2(\mu_y - 1)}{(\mu_y '-1)}$

- **163.** $a \sin\theta = n\lambda$, n = 1, 2,... $a \sin 30^\circ = 1 \times 6500$ $a = 13000 \text{ Å} = 1.3 \times 10^{-6} \text{ m} = 1.3 \ \mu\text{m}$
- 164. Consider the circle with centre at O, and having radius R. In it consider three bodies of masses M each moving with velocity v under the action of their gravitational attraction.

$$OD = \frac{L}{2}$$

$$\frac{L}{2} = R\cos 30^\circ \implies L = R\sqrt{3}$$

Centripetal force on any one mass M

$$= \frac{2GM^2}{L^2} \cos 30^{\circ}$$

$$\therefore \quad \frac{Mv^2}{R} = \frac{2GM^2}{L^2} \times \frac{\sqrt{3}}{2} \implies \frac{v^2}{R} = \frac{GM}{(R\sqrt{3})^2} \sqrt{3}$$

$$\Rightarrow \quad v^2 = \frac{GM}{R\sqrt{3}} \qquad \therefore \quad v = \sqrt{\frac{GM}{\sqrt{3}R}}$$

165. Given $\frac{\phi_A}{\phi_B} = \frac{1}{2}$
 $E_{K_1} = hf - \phi_A \qquad \dots (1)$
 $E_{K_2} = 2hf - \phi_B \qquad \dots (2)$
from Eq. (1) & (2)
 $E_{K_2} = 2[E_{K_1} + \phi_A] - 2\phi_A \qquad \Rightarrow \qquad \boxed{\frac{E_{K_1}}{E_{K_2}} = \frac{1}{2}}$
 $E_{K_2} = 2E_{K_1} + 2\phi_A - 2\phi_A \qquad \Rightarrow \qquad \boxed{\frac{E_{K_1}}{E_{K_2}} = \frac{1}{2}}$

Mock Test-10

ULTIMATE TEST SERIES NEET -2020 (Answers & Solution)

166. Activity $R_1 = N_1 \lambda \& R_2 = N_2 \lambda$

$$R_1 = N_1 \frac{\ln 2}{T}$$
; $R_2 = N_2 \frac{\ln 2}{T}$

Thus disintegrated amount is (N1 - N2)

$$N_1 - N_2 = \frac{(R_1 - R_2)T}{\ln 2}$$

as T and ln2 are constants so $(N_1 - N_2) \propto (R_1 - R_2)$

168. Here D₁ is in forward bias and D₂ is in reverse bias so

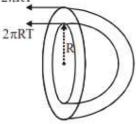
$$I = \frac{V}{R} = \frac{5}{10} = 0.5 \text{ A}$$

- 169. In forward biasing both positive and negative charge carriers move towards the junction.
- 170. $V_{max} = 4V$

$$2\pi f y_0 = 4f\lambda$$
 or $\lambda = \frac{\pi y_0}{2}$

- 171. $\Delta \phi = \frac{\pi}{2}$ so, $A = \sqrt{a^2 + a^2 + 2a.a \cos 90^\circ}$ $A = a\sqrt{2}$
- 173. Let natural length of string is L and change in length is ℓ

$$Y = \frac{F/A}{\ell/L} \implies \ell = \frac{FL}{YA} = KF$$


$$F = K\Delta\ell \implies 8 = K(x - L) \qquad \dots \dots (1)$$

$$10 = K(y - L) \qquad \dots \dots (2)$$

$$18 = K(z - L) \qquad \dots \dots (3)$$

Solve equ. (1), (2) & (3) then z = 5y - 4x

174. 2πRT

F due to S.T. = $4\pi RT$

175.
$$\frac{\left(\frac{Q}{t}\right)_{1}}{\left(\frac{Q}{t}\right)_{2}} = \frac{A_{1}L_{2}}{A_{2}L_{1}} = \frac{1 \times 1}{4 \times 2} = \frac{1}{8}$$

177. V =
$$KT^{2/3}$$

$$V = K \left[\frac{PV}{nR} \right]^{2/3} \Rightarrow V^{3/2} = K^{3/2} \cdot \frac{PV}{nR}$$
$$\Rightarrow PV^{-1/2} = nRK^{-3/2}$$
$$\Rightarrow PV^{-1/2} = \text{constant (as } PV^x = \text{constant)}$$
$$x = -1/2$$
$$W = \frac{nR(\Delta T)}{1-x} = \frac{1 \times R \times 30}{1-(-1/2)} = 20R$$
$$178. \quad \Delta t = \frac{1}{2} \alpha \Delta \theta t$$

$$5 = \frac{1}{2}\alpha[\theta - 15] \times 1 \text{Day} \qquad \dots (1)$$

$$10 = \frac{1}{2}\alpha[30 - \theta] \times 1 \text{ Day} \qquad \dots (2)$$

Eq. (1) ÷ (2)
$$\frac{1}{2} = \frac{\theta - 15}{30 - \theta} \Rightarrow 30 - \theta = 2\theta - 30 \Rightarrow \theta = 20^{\circ}\text{C}$$

179. $E = \frac{1}{2}KA^2$

and K.E. =
$$\frac{1}{2}K\left(A^2 - \frac{A^2}{4}\right) = \frac{3}{4}\left(\frac{1}{2}KA^2\right) = \frac{3}{4}E$$

180. After removal of 700 g mass

$$3 = 2\pi \sqrt{\frac{(500+400)}{K}} \Rightarrow 3 = 2\pi \sqrt{\frac{900}{K}}$$
 ...(1)

and after removal of 500 g mass

$$T' = 2\pi \sqrt{\frac{400}{K}}$$
 ...(2)
 $\therefore \frac{T'}{3} = \sqrt{\frac{400}{900}}$
 $T' = 2s$